Differenzdruck-Messumformer

DB INDUSTRIE TECHNIK MESSEN - REGELN - ÜBERWACHEN

DS-692

für Flüssigkeiten und Gase

Anwendung:

Zur Verarbeitung von Druck, Unter- oder Differenzdruck von neutralen und leicht aggressiven **Flüssigkeiten** und **Gasen** in ein stetiges Spannungssignal von **0 - 10 V** oder ein Stromsignal von **4 - 20 mA**.

Zur Niveau- oder Strömungsüberwachung in der **Heizungs-**, **Klima- und Verfahrenstechnik**.

Inbetriebnahme:

Der höhere Druck wird an P1, der niedrigere Druck (höherer Unterdruck) an P2 angeschlossen.

Der nicht benötigte Anschluss muss offen und frei von Verschmutzung bleiben.

Die Geräte sind werkseitig auf einen bestimmten Druckbereich bei senkrechter Membrane eingestellt. Das Ausgangssignal ist proportional zum anliegenden Druck.

Montage:

Druckanschlüsse unten, Entlüftungsschrauben oben. Druckanschlüsse mit Klemmringverschraubung für Rohr 6 oder 8 mm. Befestigung über den mitgelieferten Befestigungsbügel. Elektrischer Anschluss über Winkelstecker nach DIN43650.

Technische Daten:

Versorgungsspannung: 18 - 33 VDC / 24 VAC + 15% - 10 %

Stromaufnahme: 5 mA, **●**10 k♦

Ausgangssignal: 0 - 10 V in 3-Leitertechnik, > 10 k Ω

Mediumtemperatur: - 15 / + 80 °C Temperaturdrift 0,08 % FS / K,

Linearität, Hysterese: < ♥ □⊕ % FS bei 2-fachem Nenndruck

 $\begin{array}{ll} & \text{Ansprechzeit:} & < 5 \text{ ms} \\ & \text{Nullpunktspannung:} & < 50 \text{ mV} \end{array}$

Gehäuse: Edelstahl 1.4305, Deckel Kunststoff

Schutzart: IP 65

Umgebungstemperatur: -15 / + 80 °C

max. Druck: Bereich bis 10...25 bar, bis 16...32 bar, bis 25...50 bar

Berstdruck: 1,5 x max. Systemdruck

Druckanschluss: Druckanschluss P1 für höheren Druck Druckanschluss P2 für niedrigeren Druck

Klemmverschraubung R 1/8" für Ø 6 oder Ø 8

Membrane: EPDM (Äthylen-Propylen-Kautschuk)

Druck- bereich	TYP	Versorgungs spannung	Ausgang 3-Leiter	max. Druck bar	
bar				P1	P2
0 - 0,25	DS-692.903 101 141	24 VAC, 18-33 VDC	0 - 10 V, > 10 kΩ	1,2	1,2
0 - 0,5	DS-692.907 101 141	24 VAC, 18-33 VDC	0 - 10 V, > 10 kΩ	3	3
0 - 1,0	DS-692.912 101 141	24 VAC, 18-33 VDC	0 - 10 V, > 10 kΩ	5	5
0 - 1,0	DS-692.912 107 141	11 - 35 VDC	4 - 20 mA 2-Leiter	5	5
0 -2,5	DS-692.915 101 161	24 VAC, 18-33 VDC	0 - 10 V, $>$ 10 k Ω	5	5
	DS-692.915 107 161	11 - 33 VDC	4 - 20 mA 2-Leiter	5	5
0 - 4,0	DS-692.918 101 141	24 VAC, 18-33 VDC	0 - 10 V, > 10 kΩ	12	12
	DS-692.918 107 161	11 - 33 VDC	4 - 20 mA 2-Leiter	12	12
0 - 6,0	DS-692.919 101 161	24 VAC, 18-33 VDC	0 - 10 V, > 10 kΩ	12	12
	DS-692.919 107 161	11 - 33 VDC	4 - 20 mA 2-Leiter	12	12
0 - 10	DS 692.930 101 161	24 VAC, 18-33 VDC	0 - 10 V > 10 KΩ	20	12
0 - 16	DS 692.931 107 161	11 - 33 VDC	4 - 20 mA 2-Leiter	32	12
0 - 25	DS 692.932 101 161	24 VAC, 18-33 VDC	0 - 10 V, $>$ 10 k Ω	50 50	12 12
	DS 692.932 107 161	11 - 33 VDC	4 - 20 mA 2-Leiter	30	12

